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Introduction 

 

Data mining is a term which has become popular to describe a number of techniques for 

the exploration and exploitation of data. In particular, a large part of data mining involves 

the visualisation of data and subsequent utilisation of machine learning techniques for 

data classification. This paper describes some techniques for data visualisation which 

enable the user to enhance understanding of the structure and properties of data. Such 

insight into the nature of a data set is very useful when deciding what type of pre-

processing should be applied prior to automatic classification [1],[2], or prior to 

application of machine learning techniques for further analysis and exploration. The latter 

techniques are covered in other papers in this issue.  

 

BT collects and stores large quantities of data from a variety of sources. These large data 

sets typically describe different states of a system and are difficult to interpret because 

there is no obvious way of abstracting and presenting data features in a meaningful way 

for a human observer. Examples of such data range from credit status of customers of a 

company, to acoustic data generated from speech. The use of computers has made it 

relatively easy to collect and store such data, but this has not been accompanied by a 

corresponding development in methods of displaying and interpreting the data. 

 

A particular entry in a database typically consists of the values of a number of 

measurements by which the data is described. For example, a single entry in a database 

relating to BT customers might provide values for the number of lines rented by the 

customer, the last bill value, and the customer's title. The number of lines, bill value and 

title are called attributes and may have numerical or symbolic values such as £347 or "Mr". 

It is common practice to imagine individual data examples, described by N attribute 

values, as points in an N-dimensional space. The co-ordinates of the point in the space are 

the attribute values. This way of imagining data leads to the idea of visualising the 

distribution and relationship between data examples by "taking a walk through the N-



space". In general many more than three attributes are used to describe a data example 

and it is difficult conceive of such a dimensional space.  

 

Visualisation of the data examples in a high dimensional space can be made much easier 

by forming a two-dimensional map of the N-dimensional space. This is not a new idea 

and an algorithm developed by Sammon [3] in 1967 has been widely used. However, this 

algorithm is severely limited in its application to large data sets because its computational 

complexity rises as the square of the number of data points to be mapped.  

 

The work described here is a novel approach to mapping which has been developed by 

the authors. This approach, which is based upon a neural network, produces a map very 

rapidly compared to other more conventional techniques, and its speed of operation 

allows the user to interact with the data whilst looking at the map. For example, the 

distribution of the data in the map can be observed as the user interactively modifies 

various parameters such as the way in which the distance between data examples is 

measured in the high dimensional space. Interactive mapping enables the user to discover 

natural clusters of examples in a data set, and also find features which can be used in 

automatic classification of the data.  

 

The paper also shows how different types of two dimensional data map can be generated 

to emphasise different aspects of the data. For example, it is possible to generate maps 

which simply reflect the point to point distances between data examples in their N-space, 

or which emphasise the separation between clusters of data points in the N-space. Perhaps 

most importantly, the map can be generated to show the degree of separability of the data 

points in terms of their assigned class. The latter map can be used to assess how well the 

data could be automatically classified as well as highlighting those specific examples 

which are liable to be mis-classified. 

 

All of these interactive data mapping facilities, which have been made possible by the new 

algorithm, have been embodied in a data visualisation system called the HTM tool which 

enables the user to interact with the data map displayed on the screen via the computer's 

mouse. This tool is being further developed to make it part of a suite of AVS data mining 

tools. 

 

Before describing the HTM interactive visualisation tool in detail, we review the operation 

of the Sammon mapping algorithm in order to highlight some of the problems of mapping 

N-dimensional data into a two dimensional map. 

 

The  Sammon Map  



 

The  Sammon Mapping Algorithm 

Successful interaction with the data visualisation tool requires fast mapping of multi-

dimensional data into a two dimensional map for display with as little distortion as 

possible of the apparent distances between examples in the data set.  A well established 

approach to such mapping was first proposed by Sammon [3], but unfortunately the 

practical use of the Sammon Mapping algorithm is limited because its computational 

complexity rises as the square of the number of data points to be mapped. Typically, if the 

algorithm is run on a PC, a map of 20 data points can be generated in a few seconds, but 

would take hours for a thousand data points.  The long time to generate a map makes it 

impossible to use the algorithm in an interactive manner and effectively mine the data. 

 

However, the Sammon algorithm exhibits many of the important aspects of data mapping 

and is described in detail here to illustrate general problems and show the state of the art 

prior to the development of the mapping tool  

 

The basis of the Sammon Mapping Algorithm technique is to map the set of data points in 

N-dimensional space to an equal number of corresponding points in a 2-dimensional 

space. The relative positions of the 2-dimensional points are iteratively modified until 

their relative distances mirror as closely as possible the relative  distances between pairs of 

points in the N-dimensional space.  

 

The iterative adjustment of the positions of the points in 2-dimensional space is done 

using  gradient descent minimisation of a mapping error, E, which is defined as the 

average of the squared difference between the distance of each pair of points in the N-

dimensional space and the corresponding pair of points in the 2-dimensional space.  

 

Let the ith N-dimensional vector in the set of patterns to be visualised be denoted as Xi 
and the corresponding 2-dimensional vector be Yi. Assuming that there are a total of M 

examples in the data set, there are M points in the N-dimensional space and 2-

dimensional space. The squared distances between the ith and jth vectors in the N and 2-
dimensional spaces are dp(Xi,Xj) and dm(Yi,Yj) respectively where xi,k and yi,k are the 

values along the kth dimension of Xi and Yi respectively: 

    
    
dp (Xi ,X j) = (xik − x jk )2

k =1

N

∑2      (1) 

    
    
dm (Yi ,Y j ) = (yik − y jk )2

k =1

2

∑2      (2) 



A measure of the total difference between the distances of pairs of points in the N-

dimensional and 2-dimensional spaces is therefore: 

 

    

    
E = {dp(Xi

j =1

M

∑
i =1

M

∑ , Xj ) − dm(Yi ,Y j)}
2
    (3) 

                   
Usually the initial values of Yk are set randomly and are iteratively modified using the 

steepest descent algorithm defined in equation (4) in which ks is a small constant which 

determines the learning rate. The  gradient term is evaluated by differentiation of 

equation (3): 

 

    
    
yik

n +1
= yik

n
− ks .

∂E

∂yik

n       (4) 

 

Problems of The Sammon Mapping Algorithm 

Computational Complexity:  Any mapping algorithm work sufficiently fast that a user 

can make changes interactively to the data whilst observing the map. This means that the 

mapping  must converge within a fraction of a second after any changes have been made. 

The computational complexity of the standard Sammon Algorithm makes this impossible 

unless the number of examples being displayed in the map is very small. 

 

Placing New Data in The Map:  If a new data example is to be added to an existing 

Sammon Map, the entire data set with the new data example needs to be re-mapped. It is 

difficult to simply place the new example in an existing map. 

 

Map Storage:  Maps of data need to be stored for future reference in exactly the same way 

as normal geographical maps. The Sammon Map requires storage of the co-ordinates of 

every single point in the map and the map cannot be represented in a compact form.  

 

Topological Order:   A map is said to be topologically ordered if the position ordering of 

points in the map reflects their position ordering in the original space. This kind of 

topological order can be global , in which case the ordering of all points is correct, or local, 

in which case only the ordering of points which are close together is correct.  

 

The standard Sammon Map attempts to reflect global topological order and local 

topological order of the space in which the data examples are described. This leads to a 

conflict in the mapping unless the data examples actually lie on a plane in their space. 

Experiments have indicated that the Sammon Map generally minimises the conflict by 

effectively projecting the data points onto a suitably oriented plane rather than the surface 



of a complex manifold.  Projection onto a plane is probably a useful solution, but it can be 

achieved much more simply by techniques other than Sammon Mapping. 

 

 

The Hidden Target MLP Mapping Algorithm 

 

Basis of The New Mapping Algorithm 

The new mapping algorithm described in this paper is based on the multi-layer 

perceptron (MLP) [4]. The MLP is iteratively trained using a modified form of error 

backpropagation called the Hidden Target Mapping Algorithm (HTM). This algorithm 

effectively projects the examples of N-dimensional data onto a curved surface or plane 

within the N-dimensional space, and then displays the "flattened out" surface with the 

projected data points as a 2-dimensional map. The surface is automatically positioned to 

maximise the accuracy of the map and the curviness of the surface is controlled by 

selecting an appropriate MLP architecture.  

 

How The Algorithm Solves The Computation, New data, and Map Storage Problems 

The key to the algorithm's reduced computational load is that it places sensible constraints 

on the form of the mapping generated and in exchange requires much less computation 

than other techniques such as the Sammon Map. The degree of mapping constraint is 

determined by the complexity of the MLP and can range from forcing all points to lie on a 

plane, to placing points on a highly complex curved surface. In the former case very little 

computation is required to form a map whilst in the latter, considerable computation is 

needed. In comparison, the Sammon Mapping algorithm places no constraints on its 

mapping and as a result requires still more computation to form a map. 

 

The algorithm also solves some of the other problems raised in connection with the 

Sammon Mapping algorithm: in particular the problems of new data  and map storage. If 

the HTM algorithm has been already been used to generate a data map and it is desired to 

place a new data example in the existing map, the new data example is simply applied as 

a pattern to the input of the MLP. The output of the MLP will be the co-ordinates of the 

position of the new example in the existing map. 

 

The HTM mapping algorithm also solves the potential problem of map storage associated 

with the Sammon Mapping.  The entire HTM Map can be re-generated from the weight 

values of the MLP used to form the mapping. A typical MLP used in this application 

might use 250 connection weights, each represented by a four byte floating point number. 

Thus only 1kbyte of memory is required to store the map, regardless of the number of 

points in the data base which are to be mapped. 



 

Structure of  The  Hidden Target Mapping (HTM) MLP 

The MLP used to form the map has N input units to which the N-dimensional data 

example is applied, a number of hidden units, and two output units whose output values 

are the co-ordinates to which the input is mapped in the two dimensional map. The 

output units are linear and the hidden units use sigmoidal activation functions.   

 

The function of the MLP is to develop a linear or non-linear transform of the input N-

dimensional pattern to an output 2-dimensional pattern which can be plotted as a point in 

a 2-dimensional map. The form of the transform is determined by the weight values of the 

MLP which are iteratively adjusted to minimise an error measure for the mapping. This is 

shown in the next section. 

 

The HTM Training Algorithm 

It is usual  to train an MLP  using error backpropagation [4] in which the derivative of the 

error between the MLP's outputs and specified target values are evaluated and used to 

adjust the weights of the MLP using the least mean squares (LMS) algorithm.  However, 

in the mapping application, no explicit output target values are available, and a different 

form of error must be evaluated. 

 

The mapping error measure chosen for the HTM algorithm is essentially the same as that 

used in the Sammon Mapping.  The distance, dp(Xi,Xj),  between each pair of data 

examples, Xi and Xj in the N-dimensional  pattern space  is compared with the distance, 

dm(Yi,Yj),  between the corresponding pair of points Yi and Yj in the map space.  The 

weights of the MLP are iteratively adjusted to minimise the square of the difference 

between dp(Xi,Xj) and dm(Yi,Yj) over all the examples in the data set.  

 

For practical reasons, the MLP weights are updated after the evaluation of the mapping 

error for a randomly selected pair of data examples instead of after the mean square 

mapping error for the entire data set has been evaluated. This is equivalent to "per 

example MLP training" as opposed to "epoch training" of MLPs. The algorithm for the 

iterative modification of the weights therefore proceeds as follows: 

 

1) Initialise all the weights in the MLP with small random values. 

 

2) Randomly select two N-dimensional pattern  examples, Xi and Xj from the data set. 

 

3) Record the responses of the MLP, Yi and Yj to the inputs Xi and Xj. 

 



4) Evaluate the distances dp(Xi,Xj),  and dm(Yi,Yj), 

 

5) Evaluate the  the squared error, e2(i,j),  between dp(Xi,Xj),  and dm(Yi,Yj) and then evaluate 

the derivitives of the squared error with respect to each weight in the MLP. 

 

6) Use the gradient descent algorithm to update each weight value. 

 

7) GoTo (2) 

 

Evaluating The  Error Derivatives 

The squared error derivatives used in the gradient descent adaptation of the weights of 

the MLP are evaluated  by differentiation of the expression for the squared error between 

the N-space distance, dp(Xi,Xj), and the distance between the corresponding two 

dimensional vector outputs from the MLP, dm(Yi,Yj), with respect to the ouput from the 

MLP.  i.e. 

   

        e
2(i, j) = (dm (Yi ,Y j ) − dp (Xi ,Xj ))2

    (5) 

and: 

    

    

∂e2 (i, j)

∂yik

=
2{dp (Xi , Xj ) − dm(Y i ,Y j )}. (y ik − y jk )

dm(Yi ,Y j)
  

 (6) 

 

It is then  simple to evaluate the required derivatives of the squared error with respect to 

the weight values of the MLP by using the derivative given in equation (7) in conjunction 

with the standard backpropagation rule [4] in which the term δ1,k is set equal to the 

derivative of the squared error with respect to the kth output of the MLP.  

     

        
δ 1k =

∂e2 (i, j)

∂yik        (7) 

The derivative of the squared error with respect to a weight, wn,k,s which connects the 

output of the kth neuron in the (n+1)th layer to the sth unit in the nth layer is then given 

by the recursively evaluating expressions (8) and (9) in which Sn is the number of neurons 

in layer n, and the output of the kth neuron in layer n in response to input Xi , is denoted 

by oi,n,k . 

    
    
δn+ 1, k = oi ,n +1,k (1 − oi , n+1,k ). wn, k ,s

s=1

Sn

∑ .δn ,s    

 (8) 



    

    

∂e2 (i, j)

∂wn, k ,s

= o i, n+1, k.δn ,s       (9) 

The weights of the MLP can then be updated iteratively using gradient descent as shown 

in equation (10) in which p is the iteration index.  

     

    

    

ωn ,k , s

p+ 1
= ωn, k ,s

p
− ks .

∂e 2(i, j)

∂ωn, k ,s

     (10) 

Forcing Local Topological Order 

The error measure, (equation 5), which is minimised by the HTM algorithm makes no 

distinction between the mapping error for pairs of points which are distant in the pattern 

space and pairs of points which are close together. This is precisely the problem 

mentioned in connection with the standard Sammon Map. Inevitably the mapping will 

attempt to simultaneously reflect the global and local topological order of the space in 

which the data examples are described, and this may lead to a conflict in the mapping 

unless the data examples actually lie on a plane.  

 

The problem is ameliorated by the presence of the term, dm(Yi,Yj), in the denominator of 

the expression for the error derivative given in equation 6. If two points are close together 

in the map, dm(Yi,Yj) is very small and tends to amplify the value of the error derivative. 

Thus the mapping becomes much more sensitive to errors in mapping points which are 

close together than far apart and the map will tend to reflect local topological order at the 

expense of global order. This property has been exploited in the HTM algorithm by 

including a locality control  which can be modified while the map is being displayed. The 

locality control is a numerical factor which is used to control the influence of the dm(Yi,Yj) 

term in the denominator of equation 6. The locality control, kL is introduced into the 

modified expression for the error derivative given below.  The range of kL is zero to one. 

When it has zero value, the denominator of equation 18 becomes independent of 

dm(Yi,Yj) and global order will tend to be reflected in the mapping. When kL is one, the 

dm(Yi,Yj) term will have full effect and local order will tend to be reflected in the mapping 

at the expense of global order. 

 

    

    

∂e2 (i, j)

∂yi , k

=
2{dp (Xi , Xj ) − dm(Y i ,Y j )}. (y i, k − y j ,k )

dm (Yi ,Yj ).kL + 1 − kL

  (11) 

 

Practical Considerations  In The Use Of The HTM Algorithm 

Absolute Values of Outputs:  An MLP trained using the HTM algorithm is only provided 

with an error related to the relative positions of the points in the map space, and not their 

absolute values. This can lead the MLP to produce a set of points, {Y}, which have massive 



absolute value even though their relative values are correct. This may result in numerical 

overflow. A solution is to modify the expression (7) for δik so that it includes a term which 

causes the values of the outputs to tend towards zero. This is achieved by including a 

weighted absolute target value for yi,k of zero as shown in equation (12) in which the 

tendency for the outputs to adapt to zero value is controlled by the constant k. Typically k 

has a value of 0.05. 

 

        δ1k

'
= δ1k − k. yik       (12) 

 

Choice of  Single versus Multi Layer HTM Algorithm:  It is frequently found that the N-

dimensional data can be mapped quite accurately onto a plane rather than a curved 

surface.  To do this, the MLP is made to have just a single layer of linear units. This has a 

number of beneficial effects: the speed of learning is high, convergence to a global 

minimum is certain, and a map is immediately visible even before weight adaptation has 

started. The latter property arises because any set of weights in a linear perceptron will 

define a surface onto which the data can be projected. 

 

Using a single layer MLP will not always allow a satisfactory map to be generated.  If it is 

found that the normalised mean square mapping error does not converge to a small value 

when using a single layer MLP, it will be necessary to introduce a second layer of units. A 

practical approach is to start by using a small number of hidden units in the second layer. 

If this fails to provide a satisfactorily low mean square mapping error, the number of 

hidden units should be increased.  

 

Pattern Space Distance Metrics and The HTM Mapping System  

 

The Effect of Changing The Distance Metric 

The  HTM mapping is iteratively modified until the relative values of the 2-dimensional 

output of the HTM's MLP mirror as closely as possible the relative distances between 

pairs of points in the N-dimensional space.  It makes sense to plot points in the map space 

using simple Euclidean distance (equation 1 ) because humans intuitively understand this 

type of distance. However, there is no reason why some other metric should not be used 

in the N-dimensional pattern space. If this is done,  the Euclidean distances in the map 

space become proportional to distances in the N-space according to the other chosen 

metric. There are numerous pattern space distance metrics which could be used in 

conjunction with the mapping, and some examples which have been built into the 

prototype visualisation tool are presented in the following section. 

    



Examples of Pattern Space Distance Metrics 

Vari-Power Metric: This metric is a generalisation of the Euclidean distance metric. The 

distance between two vectors is found from the summation of the distances along each 

dimension, raised to the power p, which can be any real positive value. If p is made large 

then the distance between two vectors tends to be dominated by the largest distance along 

any particular dimension. Conversely, using a value of p which is much less than one 

tends to make the distances measured along each dimension have equal significance, 

regardless of their actual value. The metric is defined as follows: 

 

   
    
D(Xi , Xj ) =

1

N
xik − x jk

p

k =1

N

∑p       

 (13) 

 

City Block Metric:  The City Block metric is  a special case of  the vari-power metric in 

which  the power, p, is equal to one. When applied to binary data, this metric effectively 

returns the Hamming distance. The metric is defined as follows: 

 

   
    
D(Xi , Xj ) =

1

N
xik − x jk

k =1

N

∑       (14) 

 

Normalised Dot Product Metric: The normalised dot product metric returns a similarity, 

S(Xi,Xj), value which is proportional to the cosine of the  angle between a pair of vectors, 

independent of their magnitudes.   

 

   

    

S(Xi , Xj ) =
1

Xi

.
1

X j

x ik .x jk
k=1

N

∑      

 (15) 

However, for the purposes of generating maps, a distance is required rather than a 

similarity value, and the following conversion,  shown in equation 16, has been chosen 

which returns a distance value in the range  0-1. 

 

   
    
D(Xi , Xj ) =

1

2
(1− S(Xi , Xj ))      (16) 

 

Attribute Weighting in The Map 

In addition to selecting a particular type of pattern space distance metric, it is possible to 

weight the importance of each attribute such that it contributes more or less to the 

calculated pattern space distances.  The weighting  of each attribute can be changed 



interactively whilst the map is being displayed and this facility enables the user to 

examine the significance of each attribute.  

 

Typically, the examination would be done by setting all attribute weightings to zero 

except the weighting of the attribute being tested. If the resulting map shows class specific 

clusters it is clear that the particular attribute is important. Conversely, if increasing the 

weight of a particular attribute does not cause greater class or cluster separation in the 

map, it indicates that the attribute is not useful. 

 

The  attribute weighting  can also be used to control the viewing aspect of the map. This 

happens  because  the  HTM mapping error is minimised by primarily projecting the 

values of the heavily weighted attributes onto the map. Thus changing the attribute 

weighting function changes the "angle" of the data projection onto the map surface. 

 

 

Product Features and The HTM Mapping  

    

The Need For Product Features 

Different categories of data are often defined by the co-occurrence of pairs of attributes. 

One approach to numerically indicating the co-occurrence of a pair of attributes is by 

forming a new feature which is the product of the values of the chosen pair. If the product 

has a positive value, it indicates that the attributes simultaneously have the same polarity 

and vice versa. (The product must be evaluated after the chosen attributes have been 

normalised by setting their mean values to zero.) The product features from each pattern 

in the data set can be evaluated and then displayed in a map using the HTM algorithm. 

This may reveal structure in the data which is not apparent when the original attributes 

are mapped. 

 

An interesting and potentially useful case arises when a product feature is formed by 

squaring a single attribute value. Regions in the original attribute space which are 

enclosed by a convex boundary will be mapped to a region which can be separated by a 

single hyper-plane in the feature space.  

 

The arithmetic process of forming product features can be applied equally well to both 

real valued and binary symbolic data. In the latter case it is equivalent to forming a new 

feature which is the exclusive-OR of the two chosen attributes. This may, or may not be 

useful, but it suggests that future work should allow new features to be generated 

interactively which are any  user defined logical function of the original binary symbolic 

attributes. 



 

 

Using The HTM Mapping To Emphasise Different Aspects of The Data 

  

Class Distance Based Maps 

The HTM mapping algorithm attempts to find a linear or non-linear projection of the N-

dimensional patterns onto a 2 dimensional surface which is displayed as the data map. 

The projection is adjusted until the point to point distances in the N-space are reflected as 

nearly as possible in the 2-dimensional map space.   

 

This idea can be extended to force the projection to reflect some externally defined point 

to point distances in the N-space. In particular, if the user  arbitrarily defines the distances 

between each pair of points in the N-space, the HTM algorithm can use these distance 

values to adjust the projection until they are reflected as nearly as possible in the map. The 

only change to the HTM algorithm is that the user defined point-to-point distances are 

substituted for the pattern space point-to-point distances. 

 

An important application of this idea arises when the user specifies the class of each 

example in the data set and the distance between  each class type. The HTM algorithm 

will then attempt to form a map which separates the examples of each class in a way 

which is reflects the specified inter-class distances.  

 

The inter-class distances are defined in the form of a matrix of values which are typically 

set to unity. This causes the HTM  to attempt to place all examples of the same class at the 

same position in the map and make all classes equidistant. Using a 2-dimensional map, 

this is only possible if the number of classes is less than or equal to three. In practice it has 

been found that using a 2-dimensional map in conjunction with four or more classes still 

works satisfactorily, although the mapping error increases as the number of specified 

classes increases.  

 

Natural Cluster Distance Based Maps 

The aim of this type of mapping is to cause the N-dimensional data to be projected into 

the 2-dimensional map in such a way that natural clusters in the data are displayed with 

maximum separation.  The chosen approach is to perform a cluster analysis on the data in 

its N-space. The N-space distances between the centroids of each cluster are then 

measured and the HTM mapping is adjusted so that the map space reflects the inter-

centroid distances as nearly as possible. The entire data set is then subjected to this 

mapping and displayed in the map. 



 

There are several possible clustering algorithms which could be used in this application, 

but the most suitable candidate appears to be a simplified form of the algorithm used in 

the Kohonen Network [5]. The basis of the clustering is as follows: 

 

i) Before the mapping  commences, assign random positions to the centroids of the k 

clusters into which the data is to be grouped.  Note that the value of k can be adjusted 

interactively whilst the program is running. It would be usual to start with a low value 

then progressively increase the value of k, all the while observing to see if widely 

separated clusters are being generated. 

 

ii) Randomly select a pair of data examples from the data set. This is the same pair as used 

in each iteration of the HTM algorithm. For the purposes of clustering, only one example 

is needed. However,  since two are selected for the HTM algorithm, it is computationally 

efficient to use both at each iteration of the clustering algorithm. 

 

iii) Measure the distances from both of the selected examples to each of the current data 

centroids. 

 

iv) Assign each of the two selected examples to the clusters with the nearest centroids.  

 

v) Update the centroids of the  selected clusters, such that the centroid of each cluster 

moves fractionally closer to the corresponding data example. 

ie. 

        G
i

= (1 − α ).Gi
+ α.X i      (17) 

 

Where Gi is the centroid of the ith cluster to which the selected data example Xi has been 

found to belong, and α is a small constant which determines the rate at which the centroid 

is updated. 

 

v) Repeat the process starting at (ii). 

 

 

Examples of The Use of The HTM Mapping Tool 

 

A simple example which illustrates the basic operation of the HTM mapping tool is 

shown in Fig.1.  The figure shows the map formed by the HTM of the points on lines of 

"longitude" and "latitude" on a sphere. Points in the northern hemisphere are labelled as 

class 1 and points in the south, class 2.  Examples of the two class are represented by  the 



symbols '+' and 'x'. It is evident that there is no way of unambiguously mapping a three 

dimensional distribution into a two dimensional space and so the map  is simply a 

projection of the sphere onto a plane. The type of mapping used in this example is based 

upon the pattern space distances. 

 

A more interesting example is shown in Figs. 2a, 2b, and 2c which show HTM maps for 

artificial nine dimensional data which contains nine gaussian distributed clusters at each 

vertex of a nine dimensional hypercube. Three different classes have been arbitrarily 

defined, with three clusters being associated with each class. 

 

The map in Fig  2a is based upon class distances. i.e The map has been generated to 

maximise the distance between examples of different classes. The map in Fig. 2b has been 

generated to maximise the distances between natural clusters in the data and the map in 

Fig. 2c has been generated to reflect the point to point pattern space distances in the nine 

dimensional space. 

 

Finally, maps of some real 7-dimensional financial data are presented in Figs. 3a and 3b. 

Each example in this data set has been categorised into one of two classes. It can be seen 

from the pattern space distance based map in Fig. 3a that the classes generally occupy 

different class regions, and that there is some clustering into sub groups. (Investigation of 

the sub-groups revealed that they were caused by one of the attributes in the data only 

taking integer values.) It can be seen from the class distance based map in Fig. 3b that the 

classes would be rather easily separated using a single discriminant plane, although 

several examples are positioned ambiguously and would be mis-classified using such a 

classifier. 

 

 

Summary 

 

This paper has presented a new approach to visualising high dimensional data in the form 

of a two dimensional map. The mapping is performed iteratively by a MLP using a 

modified form of the backpropagation algorithm called the Hidden Target Mapping 

(HTM), which can be adapted to generate maps which reflect the N-space pattern 

distances, inter-class separation, or cluster separation in the data.  A key property of the 

visualisation tool embodying the HTM mapping is that it is computationally much faster 

than the standard Sammon Map when using large data sets. This allows the user to 

interact with the map by changing parameters of the mapping as well as the form in 

which the data is presented  to the HTM.  When using data sets of up to several thousand 

examples, the user can see the map change within seconds and explore the data. 
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Fig. 1: HTM Mapping of Points on a Sphere 
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Fig. 2a Class Distance HTM Map of Nine Dimensional Data 
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Fig. 2b HTM Map based Upon Natural Cluster Distances 
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Fig. 2c HTM Map based Upon Pattern Space Distances
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Fig. 3a HTM Map Based Upon Pattern Space Distances in  

Seven Dimensional Financial Data
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Fig. 3b HTM Map Based Upon  Class Distances in  

Seven Dimensional Financial Data 


